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The need for the inclusion of end-wall boundary layers in the study of the aero- 
dynamics of vortex chambers has been frequently mentioned in the literature. How- 
ever, owing to limited experimental data [1-3] with reliable information on the 
wall layers, the existing computational methods for end-wall boundary layers are 
not well-founded. The question of which parameters determine the formation of 
end-wall flow remains debatable. In some studies [4, 5], the vortex chambers 
are conditionally divided into short and long chambers. However, there is no 
unique opinion on the role of end-wall flows in vortex chambers of different 
lengths. It has also not been established for what geometric and flow parameters 
the chamber could be considered long or short. In the present study, as in [i, 
5-8], solution is obtained for the end-wall boundary-layer equations using inte- 
gral methods, considering the boundary layer in the radial direction in the form 
of a submerged wall jet. Such an approach made it possible to use the laws for 
the development of wall jets [9], and obtain fairly simple relations for inte- 
gral parameters, skin friction, mass flow in the boundary layer, and other char- 
acteristics. Results are compared with available experimental data and computa- 
tions of others authors; turbulent flow is considered; results for laminar boun- 
dary layer are given in [i0]. 

i. Problem Formulation. Derivation of Momentum Integral 
Relation for End-Wall Boundary Layer 

The first theoretical studies [6, 7] considered the interaction of rotational flow with 
end-walls in vortex chambers. It was assumed that the end-wall boundary layer, as_it develops 
along the radius of the chamber,_ can_be split into two regions (Fig. i): I (r* <_ r <_ i), 
the developing region, and II (r 0 <_ r <_ r*), the developed region. Here, r* = r*/Rk is the 
radius enclosing region II, where the entire gas Qk passes through the end-wall boundary 
layers and the radial velocity component in the region outside the boundary layers is equal 
to zero. It was also assumed in [4, 6-8] that the flow in the core of vortex chamber is 
inviscid while in the region I the rotation of the gas takes place with constant circulation 
F0 = v0r = vkRk = const. In region II, the radial velocity component in the core of the flow 
u 0 = 0 and the circulation toward the center of the chamber decreases such that it satisfies 
the condition 2QT = QK, 2QT being the total volume flow of gas through the upper and lower 
ends of the chamber. Finally, the problem is reduced to the determination of the quantity 
r* and the variation of circulation in region II. Following [4, 6, 8], we use the flow pat- 
tern shown in Fig. i. The available experimental data [ii, 12] show that the general pic- 
ture of the flow in regions I and II is maintained with changes in the radius of the outlet 
hole r 0. Region IV, determined by the value of the radius r0, is undoubtedly important to 
describe the complete aerodynamic picture in the chamber, but it is not considered in the 
present study. 

Consider boundary layers III that develop symmetrically on the lower and upper end walls 
of the chamber. Using the usual simplifications, we write the equation of motion and conti- 
nuity for the end-wall boundary layer in cylindrical coordinates [13]: 

a u  Ou v 2 ~ 8p i a~'rz 
U -~.  r --}- W ~ - -  --~- = p Or ~ "-p- "-~-z ~ ( i . i )  

Oo ae u~ t O'%z 
U--~r + W'a-F + 7 =  p az ,'; 

Op/az = O, Ou/Or + u/r  + aw/Oz = O. 
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Here z is the shear stress tensor, equal to the sum of viscous and turbulent (eddy) compo- 
nents; u, v, and w are the radial, tangential, and axial velocity components. 

In the inviscid regions I and II, Navier-Stokes equations give 

0% v~ i Op 
U~ Or r p Or ' 

UoOVo/Or + UoVo/r = O, OplOz = O, Ouo/Or + Uo/r + #wolOz = O, 

(1.2) 

Here it was assumed that the radial u 0 and circumferential v 0 velocity components in these 
regions do not change with the height of the chamber. The index 0 in Eq. (1.2) denotes 
parameters outside the end-wall boundary layer. The second equation of system (1.2) is ex- 
pressed in the form 

-7- uo 7Fr = O, 

to obtain ?0 = Fk = VkRk = const for U0 z 0, i.e., the circulation of the flow outside the 
end-wall layer in the region I (r* < r < I) is potential (F k is the circulation at the cham- 
ber inlet). 

ActuaIly, the manifestation of viscosity in the rotating flow in the region outside 
the boundary layers takes place with a loss in circulation: 

U 0 r ~ - -  - 

= Vo rm = t ,  ( 1 . 3 )  
Uk m R k 

where Vk is the circumferential velocity at the periphery of the chamber r = Rk; m < !. This 
fact is confirmed by experimental results from tangential flow field measurements in vortex 
chambers [I, 2, 12]. In particular, in [I, 2] it has been established that, depending on 
tangential Reynolds number at the periphery Rek = vkRk/v, the values:of m vary within the 
range 0.65-0.85, where the lower value of m and larger loss of circulation in the chamber 
correspond to large values of Rek. 

As shown by experiments [1-3], the boundary layer in the tangential direction is a typi- 
cal shear layer of thickness ~ (Fig. 2). The velocity profile of radial flow in the end-wall 
boundary layer is similar to the velocity distribution in the wall jet. The influence of 
wall on radial velocity profile is felt on the layer of thickness 6m in which the radial ve- 
locity increases from zero to the maximum value Um. 

Integrating the first equation of the system (i.i) across the thickness of radial wall 
layer 6m using the continuity equation for the impermeable and irrotational end wall and with 
boundary conditions z = 0: u = v = w = 0, Trz = (~rz)w; z = 5m: u = um, Trz = 0, and after 
transformations we get momentum integral relations in the radial direction: 

6m 

, ], - 

0 

741 



Here u = U/Um, v = v/v 0 are nondimensional profiles of radial and tangential velocity com- 
ponents in the boundary layer: 

8m 6ra 
no;* = 67 = j' ;;(l C = .!' (i 

0 0 

Thus, Eq. (1.4) coincides with similar expressions for wall jets [9]. The exception 
consists of the third term on the left-hand side of Eq. (1.4) due to the effects of centri- 
fugal forces on the momentum transfer in the radial direction. The integral equations for 
the tangential direction can be similarly obtained. Finally, integrating the second equa- 
tion of the system (i.i) across the entire boundary-layer thickness 6 [with boundary condi- 
tions z = 0: u = v = w = 0, ~z = (Z~z)w; z = 5: u = w = 0, v = v0, ~z = 0], 

�9 (+ ) I (dRe  r) 0;0 
;. a7 I~.e$* + __-~ _-. W = ' T  % l:~.e,,~, ( 1 . 5 )  % Or 

where 

Vo = vo/V k ; W = E v d z  6~*;  

6 

Re$* = um6~/v; 6~ = 5(I-- v)dz; ci~;2 = (t~)~,/Ovoum. 
0 

The Reynolds number in (1.5) is based on the radial velocity Um, which is the critical param- 
eter in the momentum transfer process in the boundary layer. The integral quantity 6~,** 
is the momentum thickness. In the particular case of irrotational motion of the fluid in 
the region outside the end wall layer (m = i) on the stationary surface the second term in 
(1.5) is equal to zero and the equation is considerably simplified. 

Obviously, Eqs. (1.4) and (1.5) are applicable for laminar as well as turbulent flows. 
In order to solve them, it is necessary to know the circumferential and radial velocity pro- 
files across the end-wall layer, the distribution of maximum velocity across the chamber 
radius Um = f(r), and also the skin-friction laws coupling skin-friction coefficients with 
the integral parameters of the boundary layer. However, the computation is signi_ficantly 
simplified by assuming the ratio of boundary-layer thicknesses to be a constant (6m = 6m/6 = 
const) across the radius of the end-wall surface. Such an approach is widely used in the 
analysis of wall jets [9, 14, 15]. As shown below, the computed results are weakly dependent 
on the ratio of boundary-layer thicknesses when it varies within wide limits 6m/6 = 0.05-0.3. 
Then Eqs. (1.4) and (1.5) can be solved independent of each other. Since the primary objec- 
tive is to determine the boundary-layer thickness and mass flow through it, greater attention 
in this paper is devoted to the solution of the integral relation (1.5). 

2. Velocity Distribution in the End-Wall Boundary Layer 
of the Vortex Chamber 

In the majority of studies on turbulent rotating boundary layers the circumferential 
velocity profile is described by the usual power law 

vlvo = v = (zl~) ~, n = t / 7 .  (2.1) 

It was shown in [I0] that such power-law approximation is valid only for sufficiently 
high Reynolds numbers (Rek > 105). Analysis of experimental results showed that Rek > l0 s 
corresponds to fully developed turbulent flow in the end-wall boundary layer. 

In order to describe the radial velocity profile, the effective approach, in our view, 
could be the one used in the analysis of semibounded jet [9, 14]. The boundary layer is 
divided into two regions: the wall layer 0 < z < 6m (see Fig. 2) with power laws for wall 
turbulence u/um = (z/6m) n and the jet region 6m < z < 6 where jet-mixing processes predomi- 
nate. The velocity profile in the jet region is described by the Schlichting equation [15] 
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Such an approach, as shown by a comparison, gives good agreement with experiment for differ- 
ent cases of interaction of the jet with surfaces [9, i0]. 

The resultant velocity and its direction in the end-wall layer is found from the cir- 
cumferential and radial velocity profiles in the form (2.1) and (2.2), assuming 

V~ = ~ + v 2, a = arctg ulv~ 

where ~ is the angle between the resultant velocity and the circumferential direction. In 
the wall region the boundary layer (z < 5m) its value is a constant across the thickness and 
equals the angle of rotation on the wall 

t g ~ = t g ~  u~ u __ u~ ~ .  

The quantity ~m -n = (~m/6) -n is practically constant in the interval 6m/5 = 0.05-0.3; hence, 

tg a~ = t , 4 u ~ I v o .  (2 .3 )  

Consider  now the  d i s t r i b u t i o n  of  the  maximum va lue  of  r a d i a l  v e l o c i t y  component a c r o s s  
t h e  r a d i u s  of  the  end w a l l .  This dependence i s  de te rmined  from the  system of  e q u a t i o n s  (1 .4 )  
and ( 1 . 5 ) ,  and i s  t he  paramete r  sought  in the  s o l u t i o n  of  b o u n d a r y - l a y e r  e q u a t i o n s  [1, 4 -8 ] .  
However, i f  t h e  method s i m i l a r  to  t h a t  sugges t ed  fo r  the  computat ion of  the  maximum v e l o c i t y  
in the  wa l l  j e t s  [9, 14] i s  used ,  i t  i s  p o s s i b l e  to  o b t a i n  a f a i r l y  s imple  r e l a t i o n  f o r  Um. 
The e q u a t i o n  of  motion in t he  r a d i a l  d i r e c t i o n  i s  w r i t t e n  fo r  z = 5m wi th  an i n i t i a l  approxima- 
t i o n  (Smrz/aZ)z=6m ~ 0. Then i t  f o l l o w s  from ( 1 . 1 ) :  

um Or r O Or = u~ - -  -'~" ( 2 . 4 )  

where Vm is the circumferential velocity at the point z = ~m. Since u 0 << um, the term 
u08u0/Sr in Eq. (2.4) is neglected. 

The integration of (2.4) using (1.3) and the boundary condition Um = uk at r = Rk, gives 

Um/V k = [(Uk/Vk )~ + (I -- 6~) (;-2~ -- I)/m11/, (2.5) 

In the region 5m = 0.05-0.3, the quantity (i - 5m 2n) : 0.4. Then, 

um/u k = [(Uk/Vk )~ ~- 0,4~ -~m- i)Im]U~. (2.6) 

It is worth noting that Eq. (2.6) gives results close to those obtained from numerical solu- 
tion of Eqs. (1.4) and (1.5). 

For the flow in the vortex chamber with intense vortex rollup uk << vk, from (2.6), 
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u,,/~)r = V O , 4  ( r  -2m - -  1)tin when n~ :f:O, um/t2~r = V~o,8 in (1 /6  when m = O. ( 2 . 7  ) 

The variation of the maximum value of the radial velocity component along the radius 
of the chamber in the end-wall boundary layer and computed from Eq. (2.7) is shown in Fig. 
3. Characteristically, the distribution of tangential velocity component outside the boun- 
dary layers strongly affects the development of radial flow. It is seen from Fig. 3 that 
the strongest radial flow in the neighborhood of end walls occurs with the rotation of the 
fluid from the conservation of circulation (curve i); constant velocity flow is reflected 
by curve 2, and curve 3 describes the flow with constant angular velocity. 

The variation of the angle of flow rollup at the wall for the motion along the radius 
of the end wall is found from Eqs. (2.3) and (2.7): 

tg  (Zw : 8~nnr m [0 ,4  ( r  -'>'m - -  ] ) / r a ]  I/~ when ra =/= O; 

- - -n  0 t g a , o  = 6,, [ ,8 In (l/r)]~/~when m = O; 

t g  a ~  = 0,83 V 1 - -  r 2 when m = | .  

( 2 . 8 )  

( 2 . 9 )  

( 2 . 1 0 )  

Experimental values of the rollup of the flow at the end wall of the vortex chamber 
[i, 2] practically coincide with computed results from Eq. (2.8) for the mean experimental 
value of m = 0.7 (Fig. 4, line i). Here, for the purposes of comparison, the line 2 denotes 
computation from Eq. (2.10) for the flow with constant circulation (m = i). The results 
of numerical solution [8] (curve 3) appear to be sufficiently close to the experimental and 
the present computed data. It is seen that the angle of the flow rollup sharply increases 
during the motion from the periphery of the chamber to the center, which is caused by an 
increase in radial flow along the end wall toward the center. 

3. Skin-Friction Laws for Three-Dimensional 
Turbulent Boundary Layer 

Prandtl's hypothesis for three-dimensional turbulent boundary layer is used to derive 
the skin-friction laws. The expression for turbulent skin friction has the form 

~ = ]/'~T~ + ~ = 9l (aVmlaz) ~, (3 .  i ) 

where VZ = /v 2 + u 2 is the resultant velocity in the wall region of the boundary layer. The 
angle of flow rollup does not change across the wall-region thickness 0 < z < 6m, and hence 
the direction of the resultant velocity and the shear stress here coincide. Then 

�9 r = ~ cos aw,  ~ z  = ~z s in  a ~ .  (3.2) 

Assuming that the skin-friction law for the total shear stress in the three-dimensional boun- 
dary layer is the same as that on a flat plate [14], 

v" = R 4 t l  -'<', ( ~ z ) J P  ~ B/2 ( ,,o, ( 3 . 3 )  

where for ReZm** < 104 , B/2 = 0.0128. Here it is necessary to remember that the character= 
istic speed in (3.3) is the resultant velocity at the edge of the wall layer (z = dm) 

v.~ = ] /~ ,  + o~, 8" = ,,vo V t + t g"~w. 

T h e  R e y n o l d s  n u m b e r  ( 3 . 3 )  i s  a l s o  s i m i l a r l y  b a s e d  o n  t h i s  v e l o c i t y :  

�9 4 "  " 4  4 .  
= = 

0 

(3.4) 

Equations (3.2) and (3.3) are used to find expressions for skin friction at the wall in the 
tangential direction 

ctcp/2 (T(~z)~,/pumv o B/2 (1~**~-1/4-r = = ~ ~,u~ ! o,,  [ ( l  + tg  '~ c%)/tg ~ c%]sls (3.s) 
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TABLE i 

0,05 0,092 
�9 0,1 0,093 

0,i5 0,094 

c 

5,147 
5,302 
5,465 

4,!50 0,2 
4.005 0.25 
41~o O:o 

6~ /6 C 

0,095 5,620 
0,096 5,779 
0,097 5,942 

W 

4,6t8 
4,780 
4,947 

and the radial direction 

%,/2 = ( r~ )~ /pu i  = B/2 (Re~*) -~/4 [(1 + tg ~ a~)/tg 2 a~la/S. (3.6) 

Thus, the relations obtained for the maximum value of the radial velocity component 
(2.7), the angle of rollup at the wall (2.8)-(2.10), and skin-friction laws (3.5) and (3.6) 
make it possible to solve the integral equations (1.4) and (1.5) for the developing flow 
region. 

4. Solution of Momentum Integral Relations. 
Discussion of Results 

Using the skin-friction law in the form (3.5) and the velocity distribution outside 
the end-wall layer (1.3), Eq. (1.5) is expressed in the form 

d lie;* Re., 
d--F- + r l l - - W ( ~ - - m ) l =  

B / R e * * ~ - l / r  Fr t g  1/~a~ (1 + t g  2 a~) a/a r -"  R e x .  

( 4 . 1 )  

Here Rek = vkRk/v is the tangential Reynolds number at the periphery of the chamber. 

Initially computations were made relative to the momentum thickness 6~**/6, integral 

W, and the parameter C=(!udz)/6~*, characterizing the mass flow through the end- parameter 

wall layer. Computational results in the interval 6m = 0.05-0.3, including the range of ex- 
perimental values, are given in the table. The weak dependence of integral parameters on 
5m considerably simplifies further analysis. Hence, as mentioned above, Eq. (4.1) can be 
solved independently of the momentum integral relations in the radial direction (1.4). 

The expression for the angle of rollup of the flow at the wall (2.8) is used to write 
Eq. (4.1)as 

d Re~* R,~* [t - W(1 ,~)l 
d---7 " +  "~r - -  = 

B l . .  **x-1/4 ~2~-al~t r 1) l/s r -(re+ill) R e k M  (7), = - - _ f _ k n % )  �9 ~.~ ~ ,,~ - -  

(4.2) 

{[I-~I+~( ] I'", where M(r)= j _~2m) 37:(i_r2m)/ml 
P 

Analysis showed that the expression M(r)_changes very little along the radius and in 
the range 0.7 < m < 1 could take the value M(r) = 0.85. Equation (4.2), with the boundary 
condition r = i, Re~** = 0, has the analytical solution 

1~%** [ t'25AR% (t--;)N-m+~ ] ~  N-m+0,75 7N ' 

N = 1,25 [l - -  W ( I - -  re)I, 

A = B / 2 ~  n-1/~ ( ~ "  - -  t )  M ~) ~_ 0 , 1  

(4.3) 
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With the rotation of the fluid with constant circulation outside the boundary layers 
(m = i), Eq. (4.3) is considerably simplified: 

Reo  . ( 4 . 4 )  = o , o 3  - - ' 
r 

A comparison of analytical expressions (4.3) and (4.4) with numerical solution of Eq. 
(4.1) using the Runge-Kutta method indicates good agreement. Further analysis of potential 
flow in the region outside the boundary layers is carried out for simplification and clarity. 

The variation of Re~** along the radius of the end wall is shown in Fig. 5 for the po- 
tential flow in the core (Rek = 1.3'iOS). It is seen that computation based on Eq. (4.4) 
(line i) describes the experiment [i, 2] well. Here it is necessary to keep in view that 
Eq. (4.4) is valid only for the developing region whose inner radius r* = 0.6 for the tests 
shown in Fig. 5, where line 2 is the computation for the developed flow region from Eq. (4.11). 

An expression for the momentum thickness in the tangential direction is found from Eq. 
(4.4): 

(t q- ~)0,~ Rek ~ Rk (4 .5 )  

and the data given in the table are used to find the thickness of the end-wall boundary layer: 

( l  - n 
= 0 , 5 1 2 ~ n e  k nk' (4 .5 )  

According to  exp re s s ion  ( 4 . 6 ) ,  the  t h i c k n e s s  of  the  end-wal l  boundary l a y e r  depends weakly 
on Rek and linearly increases with an increase in the radius of the chamber. Let us deter- 
mine the volume flow of the gas convected in the radial direction by the boundary layer on 
one of the end walls. Using the expression for the integral parameter C, 

5 

Qr = 2nr y udz = 2~C Re$* Re~lrkRk . 
0 

(4.7) 

Taking into account Eq. (4.4) and putting C = 5.4 according to Table i, we get 

Qr ~ (1 - [)0,s Fk Re~0,2 Rk" (4 .8 )  

Normaliz ing the  f low th rough  the  end-wal l  boundary l a y e r  wi th  r e s p e c t  to  t he  e n t i r e  f l u i d  
e n t e r i n g  the  chamber, 

= Rek ' 'R~ (4 .9 )  

Here Re = Qk/FkRk is  the  Rossby number t h a t  c h a r a c t e r i z e s  t he  s t r e n g t h  of  t he  v o r t e x  r o l l u p  
at the inlet to the vortex chamber. 

Computed results for the variation of fluid flow along the radius of the chamber through 
the end-wall boundary layer are shown in Fig. 6. Computations using Eq. (4.9) (curve I) 
and numerical results [1, 8] (curves 2 and 3, respectively) are in fairly close agreement; 
the deviation of experimental data [1-3] from computed results is explained by the fact that 
the flow in experiments is not potential. 

Equation (4.9) is used to determine the radius r* at which the entire fluid enters the 
boundary layer at the upper and lower end walls, i.e., QT = 0.5: 

~ * =  i - - 0 , 4 2  Re~ t':s. (4 .10)  

Consider the developed flow region of the boundary layer (r0 < r < r*), where the region 
outside the end-wall layers are noncirculation in the radial direction, i.e., u 0 = 0. It 
is possible to determine from (4.7) that Re~** in this region is inversely proportional to 
the radius: 

Re~* = RekRo/4mC7 = 0,0147 RekRo/7. (4 .11)  

The nature of the variation of Reynolds number in regions I and II (see Fig. i) is dif- 
ferent because of the manner in which the boundary layers are formed in these regions. 
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The circulation distributions along the radius of the no-flow zone II, and also the 
distributions of radial velocities, boundary-layer thickness, and other characteristics are 
found from the simultaneous solution of Eqs. (1.5) and (4,11). Assuming that the circumfer- 
ential velocity in this region follows the relation v0 ~m(r) = i, from Eqs. (1.5) and (4.11) 
we get 

o,69(.t ;' ")lmySx d,__,lnT.= _.. - - u , o l " '  [ t +  - -  
dr  r 

• [ ( t  - 
(4.12) 

The boundary condition is m = 1 at r = r*. Equation (4.12) was numerically solved in the 
range of variation of the expression Rek~ l'2s = 0.5-1.8, that occurs in practical vortex 
setups. As a result of the numerical solution as a function of the radius of the chamber 
and its mass flux and geometric parameters, the exponential index is determined as 

'n =/(~, He~S R~ �9 (4.13) 

Using Eqs. (4.13), (4.11), and (2.7), it is possible to compute all the required character- 
istics in the developed flow region. 

Let us now analyze in detail the results obtained. It follows from Eq. (4.8) that the 
fluid flow QT through the end-wall boundary layer with fixed value of the current radius de- 
pends only on the circulation at the periphery of the chamber Fk and its radius. The chamber 
height Hk and flux Qk through it at constant values of Fk and Rk do not have any influence 
on the boundary-layer characteristics. It is possible to come to such a conclusion by analyz- 
ing the studies [4-8], whose authors either do not emphasize this conclusion, which is im- 
portant in our view, or assume [4, 5] that the chamber height has an influence on the flow 
in the boundary layers and, consequently, even outside them. Obviously, in practical situa- 
tions, due to different contributions of the specifics of the formation of secondary circu- 
lating flows, from skin friction on the lateral surface to the coefficient of velocity con- 
servation in chambers of various sizes, the chamber height will have some influence on the 
aerodynamics as a whole. However, in the present ideal-flow model, in which there is no 
loss of circumferential velocity at the periphery and secondary flows are absent, the nature 
of boundary-layer development is determined only by the radius of the chamber and the circum- 
ferential velocity at the periphery. 

Equation (4.10) makes it possible to find the extent of the region I along the chamber 
radius. The vortex chamber is circulatory, i.e., when r* < r0, with 

Re~ 25 Ro => 2,38 (l - -  70). (4~ 14) 

We note that computations carried out in [8] gave results close to Eqs. (4.10) and (4.14). 
In [4], the author also comes to the conclusion that circulation distribution depends on 
the unique parameter 
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2fRk t;k/Uk//k ~-I/4 Re k -0'25 Ro -1,25, B L C* k u k ( 2-rC'--- J = 0 , (4.15) 

where f = 0.021 is the coefficient of friction at the end wall. 

The critical parameter in [4, 8], as also in the present study, is Rek~ 1.25 Here 
Ro characterizes the geometry of the vortex chamber resulting in the moment of momentum at 
the periphery of the chamber, and does not depend on the length of the chamber: 

Q____k_k =. ~n.~in _ Fin R o =  
Fk:Rk "inCOS~R~ -- R~COS ~" 

h e r e  F in  i s  t h e  a r e a  o f  i n l e t  s l o t s ,  and ~ i s  t h e  a n g l e  o f  i n c l i n a t i o n  o f  t h e s e  s l o t s  t o  
t h e  t a n g e n t i a l  d i r e c t i o n .  I f  Eq. ( 4 . 1 1 )  i s  e x p r e s s e d  in  t h e  form 

7 ' = 1  0,42 t [Qk~ 1'2~ 

then it is clear that an increase in circulation at the periphery or a reduction in the fluid 
flow through the chamber leads to a shortening of the developing region and a larger segment 
of the chamber becomes a dead air region. In the limiting case (Fk + ~ or Qk § 0), r* § 1 
and the entire mass flow, starting from the periphery of the chamber, passes through boundary 
layers; and when Fk § 0 or Qk + ~, transition to developed flow is not observed. 

Thus, the above analysis showed that the criterion that determines the strength of the 
turbulent end-wall_layer in the vortex chamber is the expression Rek~ when Rek ~ 
Ro 1"25 > 2.38(1 - r 0) for the potential flow, the vortex chamber is circulatory in the radial 
direction within its entire volume. 
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